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New system code uses a table lookup of IP addresses to eliminate the need for table searches 
and speed up IP support. Two local applications, however, are part of the picture, too. When 
the system is updated in a node, how can we know that the LAs are updated? If they are not, 
then the new scheme breaks down. This note develops a solution to potential problems of the 
IPNOD lookup table.

The DSNQ local application manages the IPNAT. When it receives a new IP address, it should 
update the new lookup table (IPNOD). Following system initialization, when all of the IPNAT 
is placed into the lookup table, this normally happens only when the DNS queries are made to 
refresh all the entries in the IPNAT. If a first-time node# is accessed, a new entry is added, 
DNSQ notices this, and it sends a query to the DNS. There seems no way to avoid adding a new 
call (to SetNNode) to DNSQ, since only that application can see the replies that come from the 
DNS.

The AAUX application must update the lookup table whenever a new IP address of an Acnet 
node# arrives. This normally occurs as a refresh of the trunk tables comes about via periodic 
(12 hours) queries of OPER. A new AAUX will need to call SetANode to update the lookup table 
for each IP address that is received. Again, there is no way that the system can notice this 
information’s arrival and do this job, as only AAUX sees the replies from OPER.

It is desirable that applications not know about the lookup table in detail--where it is located, 
etc. But to make the calls to the Set routines named above, there must be new “jump table” 
entries in the system code to support such calls, or these routines must be added to LASysLib.

A local application, when it is initialized, can easily determine whether the underlying system 
code is a new enough version to have the features that the LA relies upon. In this case, the new 
versions of the LAs can easily insure that the system code is new enough to support the new 
jump table entries that give access to the two needed functions. If the system is not new 
enough, the application normally turns off its own enable bit, thus causing an immediate 
termination.

But what about vice versa? How can the underlying system code notice that the newer 
versions of the LAs are installed, since the system must rely upon the existence of the new 
versions to keep the lookup table up-to-date? The system code can know the version dates of 
these applications by consulting the CODES table entries. It can also find the LATBL entry to 
insure that it is enabled to be running, although we might just assume that it is. Another 
approach might be to use a message queue to communicate between the system and the LA; 
the new LA versions can create a message queue, and if the system sees that it exists, it can 
assume it will get the necessary updates so it can call the functions required.

One possibility is to use a message queue into which each LA could write from which the 
system could read. Suppose the new DNSQ creates a message queue into which it places 
advisories on new IP addresses it comes across. When the system wonders whether the new 
version of the LA exists, it can check for the existence of the message queue. If it exists, it can 
perform its new more efficient logic; if not, it can do things the old way. After the Data Access 
Table has been executed, there will need to be a check in the system code whether anything is 
in the message queue, so it can be processed accordingly. But it would be even better if this 
could be done sooner; i.e., it would be better if the LA could make the call itself.

A routine such as GetPNode returns an error status in the case that it cannot use the lookup 



table to get the required info. This is true when the IP address upper 16 bits does not match 
the local Class B internet range. When PSNIPARP makes this call, and it finds that GetPNode 
cannot provide the info it needs, then it can be prepared to do things the old way, meaning it 
should do the search of the IPARP table. In most cases, this will not happen, so it doesn’t 
matter much in terms of overall efficiency.

As for what error status GetPNode should return in place of the node number, in case the IP 
address is out of range for a quick lookup, we can use –1. (Zero would not work, since that is a 
valid return that means there is not a current IPARP entry for this IP address.)

A new idea for LA-to-system communication
Suppose the diagnostic data stream, used for recording unusual transitions of node 

number relationships with IP addresses, were also used for communications between the two 
LAs and the system. The LAs can determine whether the data stream exists and is enabled for 
writing. Instead of making the call to a Set routine, they instead place a new record into this 
same data stream. The format of the record would be special so that it would be recognizable 
by the system code as requesting service, rather than recording an unusual change in a node 
number. Code within the system would monitor this data stream, watching for such special 
entries. When one is seen, the appropriate Set call is made. This has an advantage over a 
message queue in that it can be easily monitored, because of the array of services that 
comprise data stream support.

Exactly what will these special records mean? Recall that the format of one of these records 
includes a new node number value and an old value. The special form could use an old value 
of 0xFF4E or 0xFF41. When this is seen, the system code makes a suitable call to either 
SetNNode or SetANode. For this purpose, the new value will never be zero. (Note that 
0x4E=’N’, 0x41=’A’.)

For the case of AAUX, there can be up to 256 IP addresses associated with each trunk table 
reply. But we would not want to deluge the data stream with so many records on a repeating 
basis, even if only every 12 hours, because this would compromise its diagnostic value. But 
AAUX can notice whether any IP address is new, while it is copying the new trunk table reply 
array of IP addresses into the system TRUNK table. Only if there is a change does it need to 
write into the data stream. In this way, the data stream will not be swamped with such 
unnecessary records.

The result is that the data stream becomes even more valuable, as it records the changes that 
the LAs detect. And it solves the problem of how to let the system know of news about new IP 
addresses relative to node numbers. 

If a new system is run with old versions of the LAs, then no such data stream recording will 
occur. The system code can detect this by watching for a recent enough version date for the 
two LAs. But another way to do this is to again use the data stream. A new LA may, during 
initialization, write another special record into the data stream to advise the system code of its 
existence. The form of such a record could also use 0xFF4E (for SetNNode signifying the new 
DNSQ) or 0xFF41 (for SetANode signifying the new AAUX) as the “old value” field. But the IP 
address would presumably be zero for this announcement record. This frees the system from 
having to analyze whether new versions of the LAs are running by checking version dates, etc. 
Armed with such knowledge, the system performs table searches the old way if necessary, but 
it uses the new faster method if the new LAs support it. Only with new LAs is the lookup table 
kept up-to-date. If the new version of either LA is disabled, its termination code can write a 
similar record using 0xF04E or 0xF041, say.
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The place where system code can keep the record of the two new versions of the LAs for easy 
reference is in the upper bits of the new global variable word that holds the data stream index 
number in its low 12 bits. We can use the 0x8000 bit to signify the new DNSQ is open for 
business and use the 0x4000 bit to signify the new AAUX is operational.

The system code can include a call to a new routine in the new IPNODGS module that includes 
the package of Get and Set routines that deal with access to the lookup table. This routine is 
called MonIPNOD. Its job is to read from the data stream and process each record found there. 
To do this, it needs to remember where it last left off in its data stream monitoring. One place 
to remember this is in the data stream queue header, in the word after the START offset. This 
offset is a kind of OUT word, as used in many other system-based queues. Records would be 
read from the queue, using this OUT word as a reference, processed, advancing OUT until it is 
found to match IN. The records sought by this logic would only be the LA announcement 
records, resulting in setting or clearing the previous-mentioned flag bits, and the records 
placed there by DNSQ or AAUX that request a call to SetNNode or SetANode. Any other records 
found there would be diagnostic records only that can merely be ignored by MonIPNOD. The 
call to this monitoring routine is made from Update before starting to process the Data Access 
Table. If the data stream queue is there, but the saved offset is zero, it means that it has never 
been initialized yet, so it should be set at that time to match START before beginning to monitor 
any records.

What is a sensible order for the 3 key fields of a data stream record?
IP address
new value
old value

Think of this order as corresponding to a call to a Set routine, in which the first argument is 
the IP address, the second is the new value, and the value returned is the old value.

The “open for business” announcement records would look like
0000 0000 0000 FF4E, for the DNSQ case, or
0000 0000 0000 FF41, for the AAUX case.

The “closing” announcements would look like:
0000 0000 0000 F04E (DNSQ) or
0000 0000 0000 F041 (AAUX)

The advisory records would look like
83E1 xxxx nnnn FF4E (DNSQ) or
83E1 xxxx nnnn FF41 (AAUX)

Here the 83E1xxxx is the IP address, and nnnn is the node number. (Of course the 83E1 would 
be a different value for system operation outside of Fermilab.) The 4E=‘N’ implies that 
SetNNode should be called; the 41=‘A’ implies that SetANode should be called.

The diagnostic records of unusual node number changes would look like
83E1 xxxx nnnn yyyy

If nnnn is in the 0500–07FF range, it was written by SetNNode.
If nnnn is in the 0900–10FF range, it was written by SetANode.
If nnnn is in the 6000–6FF0 range, it was written by SetPNode.
Here, yyyy represents a nonzero “old value” that was found different from the nonzero “new 
value” during a Set routine call.
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The advantage to this scheme is that different versions of the system should work correctly 
with different versions of the LAs, during the transition period, with the only difference being 
one of efficiency. As new systems are installed, and new applications are also installed, the 
table lookup method of saving searches on IP addresses should improve efficiency in all 
nodes, especially in the PowerPC nodes that have relatively slow access (1 µs) to the IPNAT, 
TRUNK, and IPARP tables that reside in nonvolatile memory.

Performance measurements
The motivation for making the changes described here is to improve the efficiency of 

system operation. But there is no such measurement scheme in place; what’s more, it is less 
than perfectly clear how often the various search routines are called. The code must be 
“instrumented” in order to shed some light on this.

The search routines that relate to the IPNOD and IPADD tables are four, as mentioned above. 
We need to measure the execution time of each of these routines and count how often they are 
called. Here is the scheme that has been implemented:

The data stream queue has a user area that can be made large enough to hold some diagnostic 
timing records. Each of the four routines measures its own elapsed time each time it is called. 
To facilitate this, a new routine called MicroSec is used, a function with no arguments that 
returns a 32-bit microsecond counter obtained from the timer on the MVME-162 board that is 
commonly used for this purpose. Each of the four routines calls this function at the beginning 
and at the end to get an elapsed time. (The elapsed time difference will of course fit within 16 
bits.) A routine IPTLOG has been written to facilitate the reporting of these results.

PROCEDURE IPTLOG(index: Integer; usec: Integer; node: Integer);

The index argument is a small number in the range 1–4 that maps to the four routines:
1 PsnIPARP
2 NodeIPN
3 GtNodeN
4 FindUDP

The user area of the data stream queue header is laid out in 8-byte structures as follows:

The first 4 bytes show the elapsed time for the InzIPNOD routine that is called only once at 
system initialization. The memory used by the tables is large, so this may not be a small 
number. The next four bytes have no use at this time. After these 8 bytes, there follows space 
for four more 8-byte records, one for each of the 4 routines in the above order. The minimum 
user area needed in the data stream queue header is therefore 40 bytes.

Field Size Meaning
nodNum 2 Node# relating to the elapsed time measurement
countr 2 Counter incremented every time an entry is updated
mxTime 2 Maximum elapsed time encountered, in µs
lsTime 2 Last elapsed time recorded, in µs

As always, one must realize that an maximum time measurement can be influenced by the 
time spent is an interrupt routine, or of a higher priority task.

Preliminary results are as follows, with the code installed in a 68040-based IRM.
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Typical times for PsnIPARP executions are 20–30 µs. Any UDP datagram that is received must 
have a pseudo node# determined from its source IP address and source UDP port#. PsnIPARP 
does this. If the flag bit is turned off, which prevents PsnIPARP from calling GetPNode, the 
times might be more like 30–40 µs. It depends somewhat on how deeply the matching entry is 
found in IPARP table. This is not a serious difference, but the IRM’s nonvolatile memory is not 
so slow, either.

For one example, the IPNodeN timing was 48 µs the “fast” way but 82 µs the “slow” way. 
Recall that this routine is needed when a request is initiated that targets a native node#, which 
happens much less often than the first one.

The GtNodeN timing example showed 10 µs the fast way and 42 µs the slow way. This has to 
be done by Classic or ACReq to get the native node# for an incoming datagram given its 
source IP address. When receiving replies from other nodes, one will see both the PsnIPARP 
entry and this one counting actively. For a node like the Linac server node0600, these entries 
can be extremely active.

The FindUDP timing showed an example time of 11 µs the fast way and 110 µs the slow way. 
This one is needed when initiating an Acnet request. The times presumably depend upon 
where in the TRUNK tables the sought-for IP address is located.

The elapsed time for InzIPNOD was about 33 milliseconds. The two tables occupy 640K bytes.

These preliminary measurements don’t show a large problem for IRMs. But we have been hurt 
before by slow access to nonvolatile memory in the MVME-2401 boards that have a PMC 
nonvolatile memory board installed. But even for an IRM, knowing that searches are not relied 
upon for network support somehow seems better. 
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